Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
International Journal of Stem Cells ; : 334-345, 2022.
Article in English | WPRIM | ID: wpr-937691

ABSTRACT

Background and Objectives@#Flavonoids form the largest group of plant phenols and have various biological and pharma-cological activities. In this study, we investigated the effect of a flavonoid, 3, 4’-dihydroxyflavone (3, 4’-DHF) on osteogenic differentiation of equine adipose-derived stromal cells (eADSCs). @*Methods@#and Results: Treatment of 3, 4’-DHF led to increased osteogenic differentiation of eADSCs by increasing phosphorylation of ERK and modulating Reactive Oxygen Species (ROS) generation. Although PD98059, an ERK inhibitor, suppressed osteogenic differentiation, another ERK inhibitor, U0126, apparently increased osteogenic differentiation of the 3, 4’-DHF-treated eADSCs, which may indicate that the effect of U0126 on bone morphogenetic protein signaling is involved in the regulation of 3, 4’-DHF in osteogenic differentiation of eADSCs. We revealed that 3, 4’-DHF could induce osteogenic differentiation of eADSCs by suppressing ROS generation and co-treatment of 3, 4’-DHF, U0126, and/or N-acetyl cysteine (NAC) resulted in the additive enhancement of osteogenic differentiation of eADSCs. @*Conclusions@#Our results showed that co-treatment of 3, 4’-DHF, U0126, and/or NAC cumulatively regulated osteo-genesis in eADSCs, suggesting that 3, 4’-DHF, a flavonoid, can provide a novel approach to the treatment of osteoporosis and can provide potential therapeutic applications in therapeutics and regenerative medicine for human and companion animals.

2.
Biomolecules & Therapeutics ; : 126-136, 2022.
Article in English | WPRIM | ID: wpr-925604

ABSTRACT

Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.

3.
Biomolecules & Therapeutics ; : 205-210, 2021.
Article in English | WPRIM | ID: wpr-874325

ABSTRACT

Over 30 million prescriptions of NSAIDs (non-steroidal anti-inflammatory drugs) are issued every year. Considering that these drugs are available without a prescription as over the counter (OTC) drugs, their use will be astronomical. With the increasing use of NSAIDs, their adverse effects are drawing attention. Especially, stomach bleeding, kidney toxicity, liver toxicity, and neurological toxicity are reported as common. Ibuprofen, one of the extensively used NSAIDs along with aspirin, can also induce liver toxicity, but few studies are addressing this point. Here we examined the liver toxicity of ibuprofen and investigated whether co-exposure to ethanol can manifest synergistic effects. We employed 2D and 3D cultured human hepatoma cells, HepG2 to examine the synergistic hepatotoxicity of ibuprofen and alcohol concerning cell viability, morphology, and histology of 3D spheroids. As a result, ibuprofen and alcohol provoked synergistic hepatotoxicity against hepatocytes, and their toxicity increased prominently in 3D culture upon extended exposure. Oxidative stress appeared to be the mechanisms underlying the synergistic toxicity of ibuprofen and alcohol as evidenced by increased production of ROS and expression of the endogenous antioxidant system. Collectively, this study has demonstrated that ibuprofen and EtOH can induce synergistic hepatotoxicity, providing a line of evidence for caution against the use of ibuprofen in combination with alcohol.

4.
Biomolecules & Therapeutics ; : 98-103, 2021.
Article in English | WPRIM | ID: wpr-874307

ABSTRACT

AbstractThe demand for natural substances with anti-melanogenic activity is increasing due to the recent interest in skin whitening. Intensive investigation on the culture broth of Streptomyces sp. SCO-736, a marine bacterium from the Antarctica coast, has led to the isolation of a new natural product named antaroide (1). The chemical structure was established through the interpretation of MS, UV, and NMR spectroscopic data. Antaroide is a nine-membered macrolide with lactone and lactam moieties. To investigate its applicability in skin whitening cosmetics, its anti-melanogenic activity in B16F10 murine melanoma cells was examined. As a result, antaroide displayed strong inhibitory activities against melanin synthesis and also attenuated the dendrite formation induced by the α-melanocyte stimulating hormone (α-MSH). Antaroide suppressed the mRNA expression of the melanogenic enzymes such as tyrosinase, TRP-1 and TRP-2. This suggests that it may serve as a transcriptional regulator of melanogenesis. Collectively, the discovery of this novel natural nine-membered macrolide and its anti-melanogenic activity could give new insights for the development of skin whitening agents.

5.
Biomolecules & Therapeutics ; : 553-561, 2019.
Article in English | WPRIM | ID: wpr-763046

ABSTRACT

Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.


Subject(s)
Animals , Female , Humans , Mice , Antigens, Differentiation , Breast , Carcinogenesis , Cell Line , Cell Proliferation , Cervix Uteri , Epidermis , Epithelial Cells , Gastrointestinal Tract , GTP Phosphohydrolases , Immunohistochemistry , Keratinocytes , RNA , Skin Physiological Phenomena , Skin , Vagina , Water
6.
Biomolecules & Therapeutics ; : 457-465, 2019.
Article in English | WPRIM | ID: wpr-763036

ABSTRACT

Patients with diabetes mellitus (DM) often suffer from diverse skin disorders, which might be attributable to skin barrier dysfunction. To explore the role of lipid alterations in the epidermis in DM skin disorders, we quantitated 49 lipids (34 ceramides, 14 free fatty acids (FFAs), and cholesterol) in the skin epidermis, liver, and kidneys of db/db mice, a Type 2 DM model, using UPLC-MS/MS. The expression of genes involved in lipid synthesis was also evaluated. With the full establishment of hyperglycemia at the age of 20 weeks, remarkable lipid enrichment was noted in the skin of the db/db mice, especially at the epidermis and subcutaneous fat bed. Prominent increases in the ceramides and FFAs (>3 fold) with short or medium chains (

Subject(s)
Animals , Humans , Mice , Ceramides , Diabetes Mellitus , Diabetes Mellitus, Type 2 , Epidermis , Fatty Acids, Nonesterified , Hyperglycemia , Kidney , Liver , Receptors, Cytoplasmic and Nuclear , Skin , Stearoyl-CoA Desaturase , Subcutaneous Fat
7.
Biomolecules & Therapeutics ; : 599-607, 2018.
Article in English | WPRIM | ID: wpr-717992

ABSTRACT

Fasiglifam (TAK-875) a G-protein coupled receptor 40 (GPR40) agonist, significantly improves hyperglycemia without hypoglycemia and weight gain, the major side effects of conventional anti-diabetics. Unfortunately, during multi-center Phase 3 clinical trials, unexpected liver toxicity resulted in premature termination of its development. Here, we investigated whether TAK-875 directly inflicts toxicity on hepatocytes and explored its underlying mechanism of toxicity. TAK-875 decreased viability of 2D and 3D cultures of HepG2, a human hepatocarcinoma cell line, in concentration- (>50 μM) and time-dependent manners, both of which corresponded with ROS generation. An antioxidant, N-acetylcysteine, attenuated TAK-875-mediated hepatotoxicity, which confirmed the role of ROS generation. Of note, knockdown of GPR40 using siRNA abolished the hepatotoxicity of TAK-875 and attenuated ROS generation. In contrast, TAK-875 induced no cytotoxicity in fibroblasts up to 500 μM. Supporting the hepatotoxic potential of TAK-875, exposure to TAK-875 resulted in increased mortality of zebrafish larvae at 25 μM. Histopathological examination of zebrafish exposed to TAK-875 revealed severe hepatotoxicity as manifested by degenerated hypertrophic hepatocytes with cytoplasmic vacuolation and acentric nuclei, confirming that TAK-875 may induce direct hepatotoxicity and that ROS generation may be involved in a GPR40-dependent manner.


Subject(s)
Humans , Acetylcysteine , Cell Line , Cytoplasm , Fibroblasts , GTP-Binding Proteins , Hepatocytes , Hyperglycemia , Hypoglycemia , Larva , Liver , Mortality , Reactive Oxygen Species , RNA, Small Interfering , Weight Gain , Zebrafish
8.
Biomolecules & Therapeutics ; : 512-519, 2018.
Article in English | WPRIM | ID: wpr-717248

ABSTRACT

Phthalates widely used in the manufacture of plastics have deeply penetrated into our everyday lives. Recently, a concern over the toxicity of phthalates on thyroid, has been raised but in most of cases, the doses employed were unrealistically high. To investigate the effects of phthalates on thyroid, we investigated the effects of the repeated oral exposure to low to high doses (0.3, 3, 30 and 150 mg/kg) di-2-ethylhexylphthalate (DEHP) from weaning to maturity for 90 days in juvenile rats on the thyroid. The histological examination revealed that DEHP significantly induced hyperplasia in the thyroid from the doses of 30 mg/kg, which was confirmed with Ki67 staining. In line with this finding, increased mRNA expression of thyrotropin releasing hormone (Trh) was observed in the thyroid of female at 0.3 mg/kg and 150 mg/kg as determined by RNAseq analysis. Moreover, significantly increased expression of parathyroid hormone (Pth) in the female at 0.3 mg/kg, and thyroglobulin (Tg) and thyroid hormone responsive (Thrsp) in the male at 0.3 mg/kg were noted in the blood, of which changes were substantially attenuated at 150 m/kg, alluding the meaningful effects of low dose DEHP on the thyroid hormone regulation. Urinary excretion of mono-2-ethylhexyl-phthalate (MEHP), a major metabolite of DEHP was determined to be 4.10 and 12.26 ppb in male, 6.65 and 324 ppb in female at 0.3 and 30 mg/kg DEHP, respectively, which fell within reported human urine levels. Collectively, these results suggest a potential adverse effects of low dose phthalates on the thyroid.


Subject(s)
Animals , Female , Humans , Male , Rats , Diethylhexyl Phthalate , Hyperplasia , Parathyroid Hormone , Plastics , RNA, Messenger , Thyroglobulin , Thyroid Gland , Thyrotropin-Releasing Hormone , Weaning
9.
Cell Journal [Yakhteh]. 2017; 19 (Supp. 1): 44-54
in English | IMEMR | ID: emr-189339

ABSTRACT

Objective: This study attempted to identify altered metabolism and pathways related to non-Hodgkin's lymphoma [NHL] and myeloma patients


Materials and Methods: In this retrospective study, we collected plasma samples from 11 patients-6 healthy controls with no evidence of any blood cancers and 5 patients with either multiple myeloma [n=3] or NHL [n=2] during the preliminary study period. Samples were analyzed using quadrupole time-of-flight liquid chromatography mass spectrometry [LC-MS]. Significant features generated after statistical analyses were used for metabolomics and pathway analysis


Results: Data after false discovery rate [FDR] adjustment at q=0.05 of features showed 136 for positive and 350 significant features for negative ionization mode in NHL patients as well as 262 for positive and 98 features for negative ionization mode in myeloma patients. Kyoto Encyclopedia of Genes and Genomes [KEGG] pathway analysis determined that pathways such as steroid hormone biosynthesis, ABC transporters, and arginine and proline metabolism were affected in NHL patients. In myeloma patients, pyrimidine metabolism, carbon metabolism, and bile secretion pathways were potentially affected by the disease


Conclusion: The results have shown tremendous differences in the metabolites of healthy individuals compared to myeloma and lymphoma patients. Validation through quantitative metabolomics is encouraged, especially for the metabolites with significantly expression in blood cancer patients


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Lymphoma, Non-Hodgkin/metabolism , Gas Chromatography-Mass Spectrometry , Retrospective Studies
10.
Biomolecules & Therapeutics ; : 112-121, 2017.
Article in English | WPRIM | ID: wpr-226871

ABSTRACT

Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix GeneChip® Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.


Subject(s)
Animals , Mice , Acetaminophen , Chemical and Drug Induced Liver Injury , Genetic Variation , Incidence , Lipoprotein Lipase , Lipoproteins , Liver , Methods , Microarray Analysis , Real-Time Polymerase Chain Reaction , Receptors, GABA-A , Toxicogenetics , Transcriptome
11.
Biomolecules & Therapeutics ; : 461-470, 2017.
Article in English | WPRIM | ID: wpr-38712

ABSTRACT

Anticoagulant drugs, like vitamin K antagonists and heparin, have been the mainstay for the treatment and prevention of venous thromboembolic disease for many years. Although effective if appropriately used, traditional anticoagulants have several limitations such as unpredictable pharmacologic and pharmacokinetic responses and various adverse effects including serious bleeding complications. New oral anticoagulants have recently emerged as an alternative because of their rapid onset/offset of action, predictable linear dose-response relationships and fewer drug interactions. However, they are still associated with problems such as bleeding, lack of reversal agents and standard laboratory monitoring. In an attempt to overcome these drawbacks, key steps of the hemostatic pathway are investigated as targets for anticoagulation. Here we reviewed the traditional and new anticoagulants with respect to their targets in the coagulation cascade, along with their therapeutic advantages and disadvantages. In addition, investigational anticoagulant drugs currently in the development stages were introduced.


Subject(s)
Anticoagulants , Drug Interactions , Hemorrhage , Heparin , Venous Thromboembolism , Vitamin K
12.
Biomolecules & Therapeutics ; : 545-552, 2017.
Article in English | WPRIM | ID: wpr-38702

ABSTRACT

Increasing concern is being given to the association between risk of cancer and exposure to low-dose bisphenol A (BPA), especially in young-aged population. In this study, we investigated the effects of repeated oral treatment of low to high dose BPA in juvenile Sprague-Dawley rats. Exposing juvenile rats to BPA (0, 0.5, 5, 50, and 250 mg/kg oral gavage) from post-natal day 9 for 90 days resulted in higher food intakes and increased body weights in biphasic dose-effect relationship. Male mammary glands were atrophied at high dose, which coincided with sexual pre-maturation of females. Notably, proliferative changes with altered cell foci and focal inflammation were observed around bile ducts in the liver of all BPA-dosed groups in males, which achieved statistical significance from 0.5 mg/kg (ANOVA, Dunnett’s test, p<0.05). Toxicokinetic analysis revealed that systemic exposure to BPA was greater at early age (e.g., 210-fold in C(max), and 26-fold in AUC at 50 mg/kg in male on day 1 over day 90) and in females (e.g., 4-fold in C(max) and 1.6-fold in AUC at 50 mg/kg vs. male on day 1), which might have stemmed from either age- or gender-dependent differences in metabolic capacity. These results may serve as evidence for the association between risk of cancer and exposure to low-dose BPA, especially in young children, as well as for varying toxicity of xenobiotics in different age and gender groups.


Subject(s)
Animals , Child , Female , Humans , Male , Rats , Area Under Curve , Bile Ducts , Bile , Body Weight , Inflammation , Liver Neoplasms , Liver , Mammary Glands, Human , Rats, Sprague-Dawley , Toxicokinetics , Xenobiotics
13.
Annals of Dermatology ; : 143-148, 2017.
Article in English | WPRIM | ID: wpr-25593

ABSTRACT

BACKGROUND: Urticarial dermatitis, which is characterised by persistent wheals with eczematous papules and plaques, is frequently misdiagnosed and difficult to treat. Patients commonly experience intolerable pruritus which may greatly affect their quality of life. OBJECTIVE: The objective of this study is to characterize the clinical patterns of pruritus in patients with urticarial dermatitis and to determine the effectiveness of cyclosporine treatment. METHODS: This prospective study included 50 histopathologically confirmed patients with urticarial dermatitis. A face-to-face structured questionnaire was given to all patients, and they were treated with low-dose cyclosporine (1~3 mg/kg/d) for at least 2 weeks. RESULTS: The majority of patients (80.0%) had moderate to severe pruritus. Most patients experienced exacerbation of the itch in the evening (74.0%), with the extremities (upper, 86.0%; lower, 94.0%) being the most commonly involved sites. Due to severe pruritus, patients complained about reduced social contact, quality of life and difficulties in falling asleep et al. Cyclosporine significantly reduced the mean itch score and extent of erythema, and improved interference with daily activities and sleep. CONCLUSION: Our study highlights the detailed description and characteristics of pruritus in patients with urticarial dermatitis. And we recommend alternative and effective therapeutic option of low-dose cyclosporine.


Subject(s)
Humans , Accidental Falls , Cyclosporine , Dermatitis , Erythema , Extremities , Prospective Studies , Pruritus , Quality of Life
14.
Biomolecules & Therapeutics ; : 223-230, 2017.
Article in English | WPRIM | ID: wpr-151385

ABSTRACT

Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.


Subject(s)
Blood Platelets , Cytoskeleton , Hemostasis , Thrombosis , Vascular System Injuries , Xenobiotics
15.
Environmental Health and Toxicology ; : e2016026-2016.
Article in English | WPRIM | ID: wpr-197535

ABSTRACT

OBJECTIVES: Korea's Act on the Registration and Evaluation of Chemicals (K-REACH) was enacted for the protection of human health and the environment in 2015. Considering that about 2000 new substances are introduced annually across the globe, the extent of animal testing requirement could be overwhelming unless regulators and companies work proactively to institute and enforce global best practices to replace, reduce or refine animal use. In this review, the way to reduce the animal use for K-REACH is discussed. METHODS: Background of the enforcement of the K-REACH and its details was reviewed along with the papers and regulatory documents regarding the limitation of animal experiments and its alternatives in order to discuss the regulatory adoption of alternative tests. RESULTS: Depending on the tonnage of the chemical used, the data required ranges from acute and other short-term studies for a single exposure route to testing via multiple exposure routes and costly, longer-term studies such as a full two-generation reproducibility toxicity. The European Registration, Evaluation, Authorization and Restriction of Chemicals regulation provides for mandatory sharing of vertebrate test data to avoid unnecessary duplication of animal use and test costs, and obligation to revise data requirements and test guidelines “as soon as possible” after relevant, validated replacement, reduction or refinement (3R) methods become available. Furthermore, the Organization for Economic Cooperation and Development actively accepts alternative animal tests and 3R to chemical toxicity tests. CONCLUSIONS: Alternative tests which are more ethical and efficient than animal experiments should be widely used to assess the toxicity of chemicals for K-REACH registration. The relevant regulatory agencies will have to make efforts to actively adopt and uptake new alternative tests and 3R to K-REACH.


Subject(s)
Animals , Humans , Animal Experimentation , Organisation for Economic Co-Operation and Development , Practice Guidelines as Topic , Toxicity Tests , Vertebrates
16.
Biomolecules & Therapeutics ; : 379-385, 2015.
Article in English | WPRIM | ID: wpr-180151

ABSTRACT

The eye irritation potential of drug candidates or pharmaceutical ingredients should be evaluated if there is a possibility of ocular exposure. Traditionally, the ocular irritation has been evaluated by the rabbit Draize test. However, rabbit eyes are more sensitive to irritants than human eyes, therefore substantial level of false positives are unavoidable. To resolve this species difference, several three-dimensional human corneal epithelial (HCE) models have been developed as alternative eye irritation test methods. Recently, we introduced a new HCE model, MCTT HCETM which is reconstructed with non-transformed human corneal cells from limbal tissues. Here, we examined if MCTT HCETM can be employed to evaluate eye irritation potential of solid substances. Through optimization of washing method and exposure time, treatment time was established as 10 min and washing procedure was set up as 4 times of washing with 10 mL of PBS and shaking in 30 mL of PBS in a beaker. With the established eye irritation test protocol, 11 solid substances (5 non-irritants, 6 irritants) were evaluated which demonstrated an excellent predictive capacity (100% accuracy, 100% specificity and 100% sensitivity). We also compared the performance of our test method with rabbit Draize test results and in vitro cytotoxicity test with 2D human corneal epithelial cell lines.


Subject(s)
Humans , Cornea , Epithelial Cells , Irritants , Sensitivity and Specificity
17.
Biomolecules & Therapeutics ; : 476-480, 2013.
Article in English | WPRIM | ID: wpr-202591

ABSTRACT

Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesityassociated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice (2.7 +/- 0.6 vs 4.3 +/- 2.0 ng/ml, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.


Subject(s)
Animals , Humans , Male , Mice , Biomarkers , Body Weight , Depression , Developed Countries , Diet, High-Fat , Dopamine , Mice, Obese , Mood Disorders , Neurotransmitter Agents , Norepinephrine , Obesity , Plasma , Principal Component Analysis , Serotonin , Weight Gain
18.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 413-416, 2010.
Article in Korean | WPRIM | ID: wpr-186457

ABSTRACT

Fleischmann et al. first described the concept of using sub-atmospheric pressure to treat open or infected wounds in 1993. Since then, Argenta and Morykwas developed subatmospheric, or negative pressure dressings in 1997 as a means of managing complicated wounds. Since its introduction in 1997, the vacuum-assisted closure (VAC) system has been used widely in general plastic surgery, general surgery, and orthopedic surgery to manage complicated wounds of the torso and extremities. However, there is a paucity of literature describing its use in the head and neck region, particularly in oral and maxillofacial surgery. We report a successful case of postoperative orocutaneous fistula closure using a VAC system in a 59-year male with a review of the relevant literature.


Subject(s)
Humans , Male , Cutaneous Fistula , Extremities , Fistula , Head , Mouth Neoplasms , Neck , Negative-Pressure Wound Therapy , Oral Fistula , Orthopedics , Postoperative Complications , Surgery, Oral , Surgery, Plastic , Torso
SELECTION OF CITATIONS
SEARCH DETAIL